Convectively coupled wave–environment interactions

نویسندگان

  • Samuel N. Stechmann
  • Andrew J. Majda
  • Dmitri Skjorshammer
چکیده

In the tropical atmosphere, waves can couple with water vapor and convection to form large-scale coherent structures called convectively coupled waves (CCWs). The effects of water vapor and convection lead to CCW–mean flow interactions that are different from traditional wave–mean flow interactions in many ways. CCW–mean flow interactions are studied here in two types of models: a multiscale model that represents CCW structures in two spatial dimensions directly above the Earth’s equator, and an amplitude model in the form of ordinary differential equations for the CCW and mean flow amplitudes. The amplitude equations are shown to capture the qualitative behavior of the spatially resolved model, including nonlinear oscillations and a Hopf bifurcation as the climatological background wind is varied. Furthermore, an even simpler set of amplitude equations can also capture some of the essential oscillatory behavior, and it is shown to be equivalent to the Duffing oscillator. The basic interaction mechanisms are that the mean flow’s vertical shear determines the preferred propagation direction of the CCW, and the CCWs can drive changes in the mean shear through convective momentum transport, with energy transfer that is sometimes upscale and sometimes downscale. In addition to CCW–mean flow interactions, also discussed are CCW–water vapor interactions, which form the basis of the Madden–Julian Oscillation (MJO) skeleton model of the first two authors. The key parameter of the MJO skeleton model is estimated theoretically and is in agreement with previously conjectured values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model multi-cloud parameterizations for convectively coupled waves: Detailed nonlinear wave evolution

Recent observational analysis reveals the central role of three cloud types, congestus, stratiform, and deep-convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating 2-day waves, and the Madden–Julian oscillation. Recently, a systematic model convective parametrization highlighting the dynamic role of the three cloud types has been develo...

متن کامل

Modeling the interaction between cumulus convection and linear gravity waves using a limited domain cloud system resolving model

A limited-domain cloud system–resolving model (CSRM) is used to simulate the interaction between cumulus convection and two-dimensional linear gravity waves, a single horizontal wavenumber at a time. With a single horizontal wavenumber, soundings obtained from horizontal averages of the CSRM domain allow the large-scale wave equation to be evolved, and thereby its interaction with cumulus conve...

متن کامل

The Influence of Amazon Rainfall on the Atlantic ITCZ through Convectively Coupled Kelvin Waves

Using outgoing longwave radiation (OLR) and Tropical Rainfall Measuring Mission (TRMM) daily rain-rate data, systematic changes in intensity and location of the Atlantic intertropical convergence zone (ITCZ) were detected along the equator during boreal spring. It is found that the changes in convection over the tropical Atlantic may be induced by deep convection in equatorial South America. La...

متن کامل

Models for Stratiform Instability and Convectively Coupled Waves

A simplified intermediate model for analyzing and parameterizing convectively coupled tropical waves is introduced here. This model has two baroclinic modes of vertical structure: a direct heating mode and a stratiform mode. The key essential parameter in these models is the area fraction occupied by deep convection, sc. The unstable convectively coupled waves that emerge from perturbation of a...

متن کامل

The Impacts of Convective Parameterization and Moisture Triggering on AGCM-Simulated Convectively Coupled Equatorial Waves

This study examines the impacts of convective parameterization and moisture convective trigger on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). Three different convection schemes are used, including the simplified Arakawa–Schubert (SAS) scheme, the Kuo (1974) scheme, and the moist convective adjustment (MCA) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011